Leaptech
Corp. was established to help the electronics and semiconductor
manufacturing companies in India achieve global standards by adopting
the latest technologies available worldwide. It represents the world’s
leading companies offering automation equipment for PCB assembly,
semiconductor, automotive and final assembly automation.
Suresh
Nair, director, said that Leaptech is helping the electronics,
semiconductor and automotive manufacturing companies in India by
bringing in world class technologies from across the globe in assembly
automation, the technologies, which are state-of-the-art.
"We
provide both pre-sales and post-sales support to all the systems and
solutions that we offer, complete post-sales support includes
installation, commissioning, training, production support and process
support through our factory trained engineers strategically located in
Delhi, Mumbai, Bangalore and Chennai."
Leaptech provides audit
and reconditioning services to enable customers improve productivity and
uptime on their existing automated through hole and SMT assembly
machines. Nair added: "We do provide audit and reconditioning services
to customers where the machines were sold/supported by us. We may not be
able to handle machines sold by other suppliers since that will be a
breach of contract with out own principals."
As for the training
on operational and maintenance aspects of through hole insertion and SMT
machines, Leaptech also provide complete training on machines for
operation, periodical maintenance, trouble shooting as well as
preventive maintenance.
Leaptech offers consultancy services for
new electronics setup as well as for new projects in the existing
facility, which includes all detailing as well as knowhow on the process
of assembly/production. our expert team is upto date with all latest
trends in this industry.
Connected mobile devices
It
will be interesting to get Leaptech's opinon regarding connected mobile
devices. Nair said that connected mobile devices would grow for sure in
the immediate future. Growth in the long term may depend on the contents
of this segment and how interesting it is to the users.
With
regard to automotive electronics driving energy efficiency, he added
that Leaptech mostly sells automation equipment and the scope for these
equipment toward energy efficiency for automotive sector is limited.
Indian electronics scenario in 2014 and beyond
According
to Nair, the Indian electronics scenario is still dull and this may
continue in the next year as well. Things could improve once the new
manufacturing policy announced by the government starts seeing some
investments.
To boost electronics manufacturing in India, it
requires a simple action plan: make all finished electronics products
imports more expensive and give incentives to local manufacturing.
However,
he felt that nanotech will not emerge as a disruption in India, at
least, not in the near future. It may make some impact in the long run.
Thursday, November 28, 2013
Monday, November 18, 2013
Connecting intelligence today for connected world: ARM
ARM
calls the spirit of innovation as collective intelligence at every
level. It is within devices, between people, through tech and across the
world. We are still pushing the boundaries of mobile devices today.
Speaking at the ARM Summit in Bangalore, Dr Mark Brass, corporate VP, Operations, ARM, said that the first challenge was the number of people on the planet. Technology development and innovation also pose challenges.
According to him, mobile phones are forecast to grow 7.3 percent in 2013 driven by 1 billion smartphones. Mobile data will ramp up 12 times between now and 2018. Mobile and connectivity are creating further innovation.
August, a compamy, has introduced an electronic lock for doors, controlled by the smartphone. Another one is Proteus, which looks at healthcare. The smartphone is becoming the center of our world. All sorts of sensors are also getting into smartphones. Next, mobile and connectivity are growing in automobiles. Companies like TomTom are competing with automobile companies. Connectivity is also transforming infrastructure and data centers. They are now building off the mobile experience.
As per ARM, an IoT survey done has revealed that 76 percent of companies are dealing with IoT. As more things own information, there will be much more data. The IoT runs on ARM.
"There's more going on than just what you think. IoT is not just about things. Skills development should not be an afterthought. Co-operation is critical. Solutions will emerge. All sorts of things are going to happen. Three years from now, only 4 percent of companies won't have IoT in the business at all," Dr. Brass added.
IoT will be present in industrial, especially motors, transportation, energy, and healthcare. Smart meters are coming in to help with energy management. There is a move to Big Data from Little Data.
Challenges in 2020 would be in transportation, energy, healthcare and education. ARM and the ARM partnership is addressing those. "We are delivering an unmatched diversity of solutions. We are scaling from sensors to servers, connecting our world," Dr. Brass concluded.
Speaking at the ARM Summit in Bangalore, Dr Mark Brass, corporate VP, Operations, ARM, said that the first challenge was the number of people on the planet. Technology development and innovation also pose challenges.
According to him, mobile phones are forecast to grow 7.3 percent in 2013 driven by 1 billion smartphones. Mobile data will ramp up 12 times between now and 2018. Mobile and connectivity are creating further innovation.
August, a compamy, has introduced an electronic lock for doors, controlled by the smartphone. Another one is Proteus, which looks at healthcare. The smartphone is becoming the center of our world. All sorts of sensors are also getting into smartphones. Next, mobile and connectivity are growing in automobiles. Companies like TomTom are competing with automobile companies. Connectivity is also transforming infrastructure and data centers. They are now building off the mobile experience.
As per ARM, an IoT survey done has revealed that 76 percent of companies are dealing with IoT. As more things own information, there will be much more data. The IoT runs on ARM.
"There's more going on than just what you think. IoT is not just about things. Skills development should not be an afterthought. Co-operation is critical. Solutions will emerge. All sorts of things are going to happen. Three years from now, only 4 percent of companies won't have IoT in the business at all," Dr. Brass added.
IoT will be present in industrial, especially motors, transportation, energy, and healthcare. Smart meters are coming in to help with energy management. There is a move to Big Data from Little Data.
Challenges in 2020 would be in transportation, energy, healthcare and education. ARM and the ARM partnership is addressing those. "We are delivering an unmatched diversity of solutions. We are scaling from sensors to servers, connecting our world," Dr. Brass concluded.
Thursday, November 14, 2013
India poses huge opportunity for DLP: TI
Texas Instruments has been a leader in DLP or digital light processing, a
type of projector technology that uses a digital micromirror device.
Kent Novak, senior VP, DLP Products, Texas Instruments (TI) mentioned
that DLP became the no. 1 supplier of MEMS technology in 2004.
The DLP pico projectors business started in 2009. Now, pico is going into gaming systems, etc. In 2011, it went into the cinema industry. In India, out of 10,000 screens, close to 7,000 are now digital. In 2012, new DLP development kit was launched allowing developers to embed the DLP chip into non-traditional applications in new markets. In 2013, TI started working on DLP automotive chips.
He said: "DLP is an array of millions of digital micromirrors. We ship around 45 million devices. We see India as a growth opportunity for cimemas. In DLP front projection business, we have 60 percent share in India. Only 5 percent of Indian classrooms have projectors, making room for growth."
In low power pico projection, TI has 95 percent market share in India for standalone pico projection. A phone with pico projection was launched in India with iBall at 35 lumen.
DLP technology is available in India in:
Industrial: Machine vision can improve quality control in the Indian manufacturing sector.
Medical: Intelligent illumination systems for cost effective blood analysis.
Safety: Cost effective, accurate chemical analysis of food and industrial.
Automotive: Infotainment and safety solution being qualified.
DLP in automotive displays has several applications, such as wide field of view head up display (HUD) - app available by 2016, free shape interactive active console - app available by 2017, and smart headlights. Some other features include:
* High image quality: consistent contrast, brightness over lamp.
* Full, deep, accurate cover over lifetime.
* Easily enlarges larger display areas.
* High power efficiency.
* DLP technology automatically reduces reflection.
New market opportunities
There are said to be several new opportunities for DLP. These are in:
Industrial: Machine vision, spectroscopy, interactive display, 3D printing, intelligent lighting, digital light exposure.
Infotainment: Mobile phones, tablets, camcorders, laptops, mobile projection, ultra slim TVs.
Gaming: Dual console gaming, interactive gaming, near eye display.
Digital signage: Interactive surface, storefront interactive, retail engagement.
Automotive: Head up display, interactive display, intelligent lighting.
Medical: Spectroscopy, 3D printing, intelligent lighting.
TI has DLP LightCrafter family of evaluation modules. It enables faster development cycles for end equipment requiring smalll form factor, lower cost and intelligent, high-speed pattern display. The DLP LightCrafter 4500 features the 0.45 WXGA chipset. The DLP chip can enable new and innovative intelligent display apps. If your solution uses, programs or senses light, DLP could be a fit. DLP catalog offers programmable, ultra-high speed pattern. "DLP is light source agnostic. We use whatever's most efficient for brightness," he added.
The DLP pico projectors business started in 2009. Now, pico is going into gaming systems, etc. In 2011, it went into the cinema industry. In India, out of 10,000 screens, close to 7,000 are now digital. In 2012, new DLP development kit was launched allowing developers to embed the DLP chip into non-traditional applications in new markets. In 2013, TI started working on DLP automotive chips.
He said: "DLP is an array of millions of digital micromirrors. We ship around 45 million devices. We see India as a growth opportunity for cimemas. In DLP front projection business, we have 60 percent share in India. Only 5 percent of Indian classrooms have projectors, making room for growth."
In low power pico projection, TI has 95 percent market share in India for standalone pico projection. A phone with pico projection was launched in India with iBall at 35 lumen.
DLP technology is available in India in:
Industrial: Machine vision can improve quality control in the Indian manufacturing sector.
Medical: Intelligent illumination systems for cost effective blood analysis.
Safety: Cost effective, accurate chemical analysis of food and industrial.
Automotive: Infotainment and safety solution being qualified.
DLP in automotive displays has several applications, such as wide field of view head up display (HUD) - app available by 2016, free shape interactive active console - app available by 2017, and smart headlights. Some other features include:
* High image quality: consistent contrast, brightness over lamp.
* Full, deep, accurate cover over lifetime.
* Easily enlarges larger display areas.
* High power efficiency.
* DLP technology automatically reduces reflection.
New market opportunities
There are said to be several new opportunities for DLP. These are in:
Industrial: Machine vision, spectroscopy, interactive display, 3D printing, intelligent lighting, digital light exposure.
Infotainment: Mobile phones, tablets, camcorders, laptops, mobile projection, ultra slim TVs.
Gaming: Dual console gaming, interactive gaming, near eye display.
Digital signage: Interactive surface, storefront interactive, retail engagement.
Automotive: Head up display, interactive display, intelligent lighting.
Medical: Spectroscopy, 3D printing, intelligent lighting.
TI has DLP LightCrafter family of evaluation modules. It enables faster development cycles for end equipment requiring smalll form factor, lower cost and intelligent, high-speed pattern display. The DLP LightCrafter 4500 features the 0.45 WXGA chipset. The DLP chip can enable new and innovative intelligent display apps. If your solution uses, programs or senses light, DLP could be a fit. DLP catalog offers programmable, ultra-high speed pattern. "DLP is light source agnostic. We use whatever's most efficient for brightness," he added.
Friday, November 1, 2013
SEMICON Europa 2013: Where does Europe stand in 450mm path?
SEMICON Europa was recently held in Dresden, Germany on Oct. 8-10, 2013. I am extremely grateful to Malcolm Penn, chairman and CEO, Future Horizons for sharing this with me.
SEMICON Europa included a supplier exhibition where quite a few 450mm wafers were on display. One highlight was a working 450mm FOUP load/unload mechanism, albeit from a Japanese manufacturer. These exhibits did illustrate though that 450mm is for real and no longer a paper exercise.
There was also a day-long conference dedicated to 450mm in the largest room. This was crowded throughout the time and a large number of papers were given.
Paul Farrar of G450C began with a presentation about Supply Chain Collaboration for 450mm. His key message was there are 25 different tools delivered to G450C of which 15 are installed in the NFN cleanroom. This number will grow to 42 onsite and 19 offsite by Q1 2015.
He stated that Nikon aims to have a working 193i litho machine in 2H 2014 and install one in Albany in 1H 2015. Farrar also reported a great improvement in wafer quality which now exceed the expected M76 specification, and prime wafers to the M1 spec should be available in Q3 2014. There has also been good progress on wafer reclaim and it is hoped some wafers can be reused up to 10 times, although at least three is the target.
Metrology seems to be one of the most advanced areas with eight different machines already operational. The number of 450mm wafers in their inventory now stands at over 10,000 with these moving between the partners more rapidly. It was immediately noticeable from Farrar's speech that G450C is now recognising the major contribution Europe is making to 450mm and is looking for more collaborations.
Facilities part of F450C
Peter Csatary of M&W then dealt with the facilities part of G450C, known as F450C. This group consists of:
• M&W (co-ordination)
• Edwards
• Swagelok
• Mega Fluid Systems
• Ovivo
• CH2MHILL
• Haws Corporation
• Air Liquide
• Ceres Technlogies
• CS Clean Systems
F450C is seen as streamlining communications with the semiconductor companies and their process tool suppliers. The group will focus on four key areas, namely Environmental Footprint, Facility Interface Requirements, Cost and Duration, and Safety and Sustainability.
One interesting point raised was that 450mm equipment is inherently more massive and one suggestion has been that ceiling mounted cranes will be required to install and remove equipment. This of course means that fab roofs would need to be stronger than previously. This topic was discussed at the latest F450C meeting subsequent to this conference.
Another new concept is that of a few standardised 3D templates and adapter plates to allow fab services to be pre-installed before the equipment is placed.
An interesting point made elsewhere by M&W is that the current preference is to place a fab where there are already other fabs in existence so that the infrastructure to transport products, materials and services is already in place, as are basic utilities such as power, natural gas and water supply.
However, the scale of the expected utility demand at 450 mm ups the stakes as for example a large 300 mm facility uses about 4 million gallons of water per day, whereas a 450 mm fab will use almost double that, putting immense strain on a location's infrastructure should there be other fabs in the region. This could affect future site selections.
An outcome of this phenomenon is that the reduction, reclaim and re-use of materials will no longer be driven only by the desire to be a good corporate citizen, but will also be driven by cost control and to ensure availability of required resources such as power, water, specialty gases and chemicals.
SEMICON Europa included a supplier exhibition where quite a few 450mm wafers were on display. One highlight was a working 450mm FOUP load/unload mechanism, albeit from a Japanese manufacturer. These exhibits did illustrate though that 450mm is for real and no longer a paper exercise.
There was also a day-long conference dedicated to 450mm in the largest room. This was crowded throughout the time and a large number of papers were given.
Paul Farrar of G450C began with a presentation about Supply Chain Collaboration for 450mm. His key message was there are 25 different tools delivered to G450C of which 15 are installed in the NFN cleanroom. This number will grow to 42 onsite and 19 offsite by Q1 2015.
He stated that Nikon aims to have a working 193i litho machine in 2H 2014 and install one in Albany in 1H 2015. Farrar also reported a great improvement in wafer quality which now exceed the expected M76 specification, and prime wafers to the M1 spec should be available in Q3 2014. There has also been good progress on wafer reclaim and it is hoped some wafers can be reused up to 10 times, although at least three is the target.
Metrology seems to be one of the most advanced areas with eight different machines already operational. The number of 450mm wafers in their inventory now stands at over 10,000 with these moving between the partners more rapidly. It was immediately noticeable from Farrar's speech that G450C is now recognising the major contribution Europe is making to 450mm and is looking for more collaborations.
Facilities part of F450C
Peter Csatary of M&W then dealt with the facilities part of G450C, known as F450C. This group consists of:
• M&W (co-ordination)
• Edwards
• Swagelok
• Mega Fluid Systems
• Ovivo
• CH2MHILL
• Haws Corporation
• Air Liquide
• Ceres Technlogies
• CS Clean Systems
F450C is seen as streamlining communications with the semiconductor companies and their process tool suppliers. The group will focus on four key areas, namely Environmental Footprint, Facility Interface Requirements, Cost and Duration, and Safety and Sustainability.
One interesting point raised was that 450mm equipment is inherently more massive and one suggestion has been that ceiling mounted cranes will be required to install and remove equipment. This of course means that fab roofs would need to be stronger than previously. This topic was discussed at the latest F450C meeting subsequent to this conference.
Another new concept is that of a few standardised 3D templates and adapter plates to allow fab services to be pre-installed before the equipment is placed.
An interesting point made elsewhere by M&W is that the current preference is to place a fab where there are already other fabs in existence so that the infrastructure to transport products, materials and services is already in place, as are basic utilities such as power, natural gas and water supply.
However, the scale of the expected utility demand at 450 mm ups the stakes as for example a large 300 mm facility uses about 4 million gallons of water per day, whereas a 450 mm fab will use almost double that, putting immense strain on a location's infrastructure should there be other fabs in the region. This could affect future site selections.
An outcome of this phenomenon is that the reduction, reclaim and re-use of materials will no longer be driven only by the desire to be a good corporate citizen, but will also be driven by cost control and to ensure availability of required resources such as power, water, specialty gases and chemicals.
Subscribe to:
Posts (Atom)