Wednesday, August 28, 2013

Moore’s Law could come to an end within the next decade: POET

POET Technologies Inc., based in Storrs Mansfield, Connecticut, USA, and formerly, OPEL Technologies Inc., is the developer of an integrated circuit platform that will power the next wave of innovation in ICs by combining electronics and optics onto a single chip for massive improvements in size, power, speed and cost.

POET's current IP portfolio includes more than 34 patents and seven pending. POET’s core principles have been in development by director and chief scientist, Dr. Geoff Taylor, and his team at the University of Connecticut for the past 18 years, and are now nearing readiness for commercialization opportunities. It recently managed to successfully integrate optics and electronics onto one monolithic chip.

Elaborating, Dr. Geoff Taylor, said: "POET stands for Planar Opto Electronic Technology. The POET platform is a patented semiconductor fabrication process, which provides integrated circuit devices containing both electronic and optical elements on a single chip. This has significant advantages over today’s solutions in terms of density, reliability and power, at a lower cost.

"POET removes the need for retooling, while providing lower costs, power savings and increased reliability. For example, an optoelectronic device using POET technology can achieve estimated cost savings back to the manufacturer of 80 percent compared to the hybrid silicon devices that are widely used today.

"The POET platform is a flexible one that can be applied to virtually any market, including memory, digital/mobile, sensor/laser and electro-optical, among many others. The platform uses two compounds – gallium and arsenide – that will allow semiconductor manufacturers to make microchips that are faster and more energy efficient than current silicon devices, and less expensive to produce.

"The core POET research and development team has spent more than 20 years on components of the platform, including 32 patents (and six patents pending)."

Moore's Law to end next decade?
Is silicon dead and how much more there is to Moore’s Law?

According to Dr. Taylor, POET Technologies’ view is that Moore’s Law could come to an end within the next decade, particularly as semiconductor companies have recently highlighted difficulties in transitioning to the next generation of chipsets, or can only see two to three generations ahead.

Transistor density and its impact on product cost has been the traditional guideline for advancing computer technology because density has been accomplished by device shrinkage translating to performance improvement. Moore’s Law begins to fail when performance improvement translates less and less to device shrinkage – and this is occurring now at an increasing rate.

He added: "For POET Technologies, however, the question to answer is not when Moore’s Law will end - but what next. Rather than focus on how many more years we can expect Moore’s Law to last – or pinpoint a specific stumbling block to achieving the next generation of chipsets, POET looks at the opportunities for new developments and solutions to continue advancements in computing.

"So, for POET Technologies, we’re focusing less on existing integrated circuit materials and processes and more towards a different track with significant future runway. Our platform is a patented semiconductor fabrication process, which concentrates on delivering increases in performance at lower cost – and meets ongoing consumer appetites for faster, smaller and more power efficient computing."

Friday, August 16, 2013

What’s happening with 450mm: G450C update and status

The Global 450mm Consortium (G450C) has been driving the effective industry 450mm development. It is co-ordinating test wafer capability supporting development and demonstrating unit process tool performance. The focus is now on improving tools with suppliers to be ready for customer operations.

Giving an update during the recently held Semicon West 2013 at San Francisco, USA, Paul Ferrer, GM, G450C, said that if one looks at the G450C lithography tool roadmap, by 1H-2014, the 300mm coupon, 450mm directed self-assembly and 450mm imprint will be completed. From 2H-2014 to 1H-2015, there will be 193i patterning service at Nikon’s site. Nikon 193i move-in will take place from 1H-2015 to 2H-2016.

Suppliers are developing the 450mm tool set with 10 tools per quarter being delivered to G450C, the global consortium for 450mm fabs. Significant progress has been made in wafer quality and wafer reclaim is almost ready. Automation and carriers are working, and suppliers are co-operating on the key initiatives. Global collaboration is said to be picking up steam.

In the NFX cleanroom, the 450mm OHT is ready for inter-fab transfer. There are nine tools in-fab — two metro, three process, and four stocker, respectively. There will be seven ODD 3Q2013, and 10 tools ODD 4Q2013, respectively.

As for 450mm notchless wafer activities, the key technical results include the backside fiducial marks that have achieved the desired accuracy (3σ = 0.5μm) using existing camera technology. There are design rules of fiducial marks, such as multiple locations (≤ 4) for robustness and speed, different patterns at multiple locations, and off crystal plane, fewer dots and shallower dots to minimize the Si crystal damage.

As for program highlights, there are collected designs from G450C member companies, tool suppliers, and optical detection suppliers. Also, there has been delivery of 300mm test wafers with fiducial marks. G450C has co-ordinated test wafer plans with suppliers. Further, for 450mm silicon wafer readiness, notchless wafers are technically achievable now.

The G450C members include CNSE/Research Foundation, GLOBALFOUNDRIES, Intel, IBM, Samsung and TSMC.

Thursday, August 15, 2013

300mm is the new 200mm!

300mm is the new 200mm, said GlobalFoundries' David Duke, during a presentation titled 'Used Equipment Market' at the recently held Semicon West 2013 in San Francisco, USA. Used semiconductor equipment sourcing and sales is a very interesting challenge.

Qimonda, Spansion, Powerchip and ProMOS jumpstarted the market. Now, there is a broadening user base. There is an unexpected uptake by analog and power device producers to achieve economies of scale. There has been legacy logic scaling. Also, the 200mm fabs are being upgraded to 300mm with used equipment. Many 300mm tools can “bridge” to 200mm easily.

Parts tools are seeding the ecosystem. Third parties are also able to support refurb as well as tool moves. However, we need more! Software licensing is becoming a smaller hurdle. There has been no over-supply yet!

So, what are the 'rough' rules of thumb for 300mm? First, there are approximately 1,500 individual tools in the open market. Few sellers know the values as the market is still developing. Twenty percent of the transactions drive 80 percent of sales. Today, the number of 300mm buyers is around  1/10th the number of 200mm buyers!

Lithography has been the biggest difference. Leading edge DRAM is far more expensive in lithography. Lithography has seen the most dramatic financial effects with explosive pricing in technology (immersion) and the need for capacity (two-three critical passes vs. one with dual/triple gate patterning. As of now, financial shocks and bankruptcies are the main drivers for used 300mm.

Next, 200mm is now the new 150mm! The 200mm OEM support is starting to dry up. It is nearly impossible to compete in productivity vs. 300mm. Oversupply is causing values to stay suppressed. The only bright spot being: there is still strong demand for complete fabs. The 200mm market split is roughly by 40 percent Asia and 60 percent rest of the world.

So, what are the likely alternative markets for 200mm and 300mm fabs? These are said to be MEMs and TSV, LEDs and solar PV.

Friday, August 2, 2013

Welcome to the converged infrastructure!

Don’t want to miss deadlines? Feel challenged about resources to deliver on critical business issues/initiatives? Well, are you desirous of responding much, much faster to customer requirements? Welcome to the converged infrastructure (CI)!

Is the future of IT enterprises resting on a converged infrastructure? Perhaps, yes! The CI comes with pre-integrated storage, networking, and virtualization — all as a single platform. That would surely increase the efficiency, agility and resiliency of any organization.

So, what exactly does the CI involve? Well, it will integrate all your servers, networking and storage into a single solution. This would improve the utilization of these collective resources effectively and efficiently. There will be tremendous simplification and centralization of management of resources. Further, it can bring down your IT expenditure by at least 30-40 percent, if not more! Enterprises can even have their RoIs within one or two years of implementation.

Having a CI in an enterprise involves having a strategic approach that touches every part of IT, such as applications, infrastructure and management, leading to:

* Accelerated IT service deployment.
* Efficiency across the IT services lifecycle.
* Strengthened IT service quality.

Dell’s PowerEdge VRTX shared infrastructure platform aims to do exactly all of the above, thereby the redefine office IT! There are integrated servers, storage and networking in a compact chassis optimized for office environments.

Dell’s PowerEdge VRTX provides a shared infrastructure platform, scalable performance, flexible shared storage, simple and versatile systems management, integrated networking and flexible I/O, and seamless management integration. CIOs definitely do not need to worry about loud servers, cabling nightmares, etc.

Dell’s PowerEdge VRTX is meant not only for SMBs, but also for large companies in retail, banking, healthcare, education, financial, etc. For example, a large company may have a huge data center somewhere that manage various stores. However, at each individual store/location, there’s no central IT management or administration. Hence, this acts like an IT administrator-in-a-box by giving the IT administrator the ability to manage across any store/location across the world using just from one box.

The PowerEdge VRTX is really a shared infrastructure platform, offering extensive performance and capacity with office-level acoustics in a single, compact tower chassis. It is ideal for small and midsize businesses, as well as remote and branch offices of large enterprises.

There is no compromise on scalable performance. Dell VRTX can help businesses gain fast application response times, run multiple applications that need performance or low latency, power through peak processing periods and scale for future business growth. There is flexible shared storage. All four server nodes have access to the low-latency internal shared storage that is ideal for virtualization and clustering. Local storage is also available in the chassis, which is highly economical and easier to manage than traditional SAN.

The PowerEdge VRTX offers integrated networking and flexible I/O. It includes a GbE embedded switch that eliminates the need to purchase a separate networking device and PCIe resources that are shared across the compute nodes within the chassis.

It also allows simple, efficient and versatile systems management. Full-functioned unified system management with Chassis Management Controller (CMC) and GeoView helps take much of the time and effort out of system administration and control. Deploy, monitor, update and maintain through a unified console that covers servers, storage and networking. Dell’s VRTX systems management is also integrated with major third-party management tools, protecting the CIOs installed investments and allowing them to use what they know.

This is a paid post in conjunction with IDG and Dell.