Sunday, December 12, 2010

UCLA researchers to develop non-volatile logic technology

Early this month, The Defense Advanced Research Projects Agency (DARPA) awarded an $8.4 million grant to the University of California, Los Angeles (UCLA) Henry Samueli School of Engineering and Applied Science for research on a technology known as non-volatile logic, which enables computers and electronic devices to keep their state even while powered off, then start up and run complex programs instantaneously.

The research has broad implications across a range of technologies, including portable electronics, remote sensors, unmanned aerial vehicles and high-performance computing. UCLA Engineering researchers will conduct studies into the materials, design, fabrication and tools used to develop such technologies.

"To achieve the ambitious goals of this program, we are planning to introduce key innovations in terms of both material and device structures. This is an opportunity to study new nano-magnetic physics while developing an exciting technology," said research associate Pedram Khalili, who will be the project manager at UCLA, in a release.

Thanks to Ms Wileen Wong Kromhout, director of Media Relations & Marketing, UCLA Henry Samueli School of Engineering and Applied Science, I was able to connect with Pedram Khalili, research associate, Department of Electrical Engineering, UCLA, and project manager, UCLA-DARPA STT-RAM and NV Logic Programs.

Logic technology could lead to instant-on computers
First, I asked Khalili what's this technology that is known as non-volatile logic all about? He said: "In a nutshell, it is a logic technology, which retains its state, while doing computation. That means, you can turn it off, and turn it on again, and it will resume the computation where it had left off. This is not the case with the current computers. Hence, it can lead to instant-on computers."

UCLA Engineering researchers will also conduct studies into the materials, design, fabrication and tools used to develop such technologies. So, what are these materials, design, tools, etc. going to be? Khalili added: "The materials will be ferromagnetic, i.e., we will be using dynamic phenomena -- known as spin waves -- in magnetic thin films to perform logic. The memory effect (i.e., non-volatility) will also be provided by a magnetic memory bit."

The UCLA researchers are said to be aiming to develop a prototype non-volatile logic circuit, which could lead to development of new classes of ultra–low-power, high-performance electronics. Khalili noted, "The prototype that we refer to will be a logic circuit performing a logic operation in a non-volatile manner."

The researchers are also planning to introduce key innovations in terms of both material and device structures. This is said to an opportunity to study new nano-magnetic physics, while developing an exciting technology. Khalili clarified, "Generally, we will be looking for new ways to control magnetization on the nanoscale, in a fast and energy-efficient manner."

The project will be led by UCLA under principal investigators Kang Wang and Alex Khitun, an assistant research engineer, and will involve researchers from UCLA, UC Irvine, Yale University and the University of Massachusetts.

On a personal note, I am extremely delighted to touch base with such a renowned and globally acclaimed institution like the UCLA Henry Samueli School of Engineering and Applied Science and its researchers/faculty.

Am looking forward to many more interactions with UCLA and several other globally renowned institutes, and hopefully, with many such institutes from India who are doing cutting-edge technology research.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.